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CHAPTER 4

Inelastic Material Behavior

and unloading

0

Permanent
strain

(a) (b) (c)

EGM 5653
Advanced Mechanics of Materials

Namas Chandra

AdvanCEd MeChaniCS Of Materials %

Chapter 4-1




EGM 5653

Objectives

Nonlinear material behavior
Yield criteria
Yielding in ductile materials

Sections

4.1 Limitations of Uniaxial Stress- Strain data
4.2 Nonlinear Material Response

4.3 Yield Criteria : General Concepts

4.4 Yielding of Ductile Materials

4.5 Alternative Yield Criteria

4.6 General Yielding

Namas Chandra

AdvanCEd MEChaniCS Of Materials %

Chapter 4-2




EGM 5653

Introduction

»When a material is elastic, It returns to the same state (at
macroscopic, microscopic and atomistic levels) upon removal of all
external load
»Any material is not elastic can be assumed to be inelastic
E.g.. Viscoelastic, Viscoplastic, and plastic
» To use the measured quantities like yield strength etc. we need
some criteria
» The criterias are mathematical concepts motivated by strong
experimental observations
E.g. Ductile materials fail by shear stress on planes of maximum
shear stress
» Brittle materials by direct tensile loading without much yielding
» Other factors affecting material behavior
- Temperature
- Rate of loading
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Types of Loading
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4.2.1 Models for Uniaxial stress-strain

All constitutive equations are models that are supposed to represent
the physical behavior as described by experimental stress-strain
response
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Experimental Stress strain curves |dealized stress strain curves

Elastic- perfectly plastic response
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4.2.1 Models for Uniaxial stress-strain contd.

a

(h)

Linear elastic response

(D)

Elastic strain hardening response
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4.2.1 Models for Uniaxial stress-strain contd.

Rigid models
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Ideal Stress Strain Curves
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4.2.1 Models for Uniaxial stress-strain contd.

4.4 The members AD and CF are made of I . == |
elastic- perfectly plastic structural steel, and member BE e T "1

Is made of 7075 —T6 Aluminum alloy. The members 1.2m

each have a cross-sectional area of 100 mm2.Determine Al l B (
the load P= P, that initiates yield of the structure and the — l/’

fully plastic load P, for which all the members yield.
Soln:

4"4J Let subcoript S denste steel amed scbeript # dente
alominvm. Then fpgmr Hppendic A, Es = 200 64, Y = 250 Mfa,
! E- 7—? MP4 M Y"' < -570/1{”4 For a ;/Ven Ver'f:c.p/

d.g/(aceman:f‘ U of

bearn ABC, the strains (i the stel
dand alomnvm bars are, respec-Fwe(J & = U/Ls and
Ep = /Ly, Thos, the Stresses it the bars are

O; — E:.;ES = E_c,u/LS ancf d; — Eﬁ 6‘4 — E,,u./[__ﬂ ; |
Contd..
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4.2.1 Models for Uniaxial stress-strain contd.

.4 | contmved: For yreld of the steel bars, y = YgL_S/é_'g or
= —?SOC"S)/?aa =[1.-.Q78 anm- For }u‘c/J of the alvmimun bar
o= )QLA/E& = Sooll-2/72 £-333 o7 . ﬁcreﬁrc/ The
steel bars )’/'c/c/ frsl. With «s= [-8253mm, The

Stress ih the stee/ bars (5 Y = 250 yFa, and the
S'f-rcss L9 ‘Hi( a!um:‘num bar i 0" E;,ub L_ZQZZ;Z H?.S |

(4) At ych DJL Fhe steel b&rsl fum./nljélm of ﬁr{es
m e verticdd divection y/‘c/q(s the resovlt

P=F, =2 )s#+ GA <[22 rmgies = E1-35EN
Cb-) 51;‘7;/” Q,'F )/:cfcl o‘f "HIQ Adlomyom Ba/”'

F k= zxsmmﬁ [ 2(250)+ Svg@ed) = 100 4N

1

e
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4.3 The Yield Criteria : General concepts

General Theory of Plasticity defines

Yield criteria : predicts material yield under multi-axial state of stress
Flow rule : relation between plastic strain increment and stress increment
Hardening rule: Evolution of yield surface with strain

Yield Criterion is a mathematical postulate and is defined by a yield
function f = f({o,} Y)

where Y is the yield strength in uniaxial load, and is correlated with the
history of stress state.

Some Yield criteria developed over the years are:

Maximum Principal Stress Criterion:- used for brittle materials
Maximum Principal Strain Criterion:- sometimes used for brittle materials
Strain energy density criterion:- ellipse in the principal stress plane
Maximum shear stress criterion (a.k.a Tresca):- popularly used for ductile materials
Von Mises or Distortional energy criterion:- most popular for ductile materials
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4.3.1 Maximum Principal Stress Criterion

Originally proposed by Rankine
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4.3.2 Maximum Principal Strain
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This was originally proposed by St. \enant

f, =|o; —vo, —vo,|-Y =0

f, =|o, —vo, —vo,|-Y =0

f, =|o, —vo, —vo,|-Y =0

or

or

or

0, — U0, —LO, =tY

o, —LO;, —LO, =xY

o, — U0, —U0o, ==*Y

Hence the effective stress may be defined as

o, = Max

ENEZS

The yield function may be defined as
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4.3.2 Strain Energy Density Criterion
This was originally proposed by Beltrami
Strain energy density is found as
1

_ 2 2 2
UO_E[O_l +0,° +0 —20(0'10'2+0'10'3+0'20'3)]>0

o, =-Y

o, —vay, =Y

Strain energy density at yield in uniaxial tension test o
Y 5 1 2

U. ——_
oY 2E
Yield surface is given by

o’ +o’+o, —2v(0,0, + 0,0, +O'20'3)—Y2 =0

f=c2-Y*

. 2 2 2
Ge—\/ﬁl +0,°+0," —20(0,0, + 0,0, +0,0,)
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4.4.1 Maximum Shear stress (Tresca) Criterion

Hydrostatic axis

This was originally proposed by Tresca — T" .
- - - - criterion (Tresca) \
Yield function is defined as }/"
Y P §
f = O-e A P :
: , e
where the effective stress is 7
//, 0~~~ Ty
— 27
Ge - Tmax . £ //’/ ‘////
3 /’(///
Magnitude of the extreme values of the stresses /
a.re ,Z_l — M von F:/]ife? E:Ihp;%e (_Ct)sta\he‘-:jrm o> o, =1}
2 Tresca hexagon (maximum 5 Yl
— shear-stress criterion)
2= |G3 = _oy =Y
2
o, — O Ly a
Ty = |]‘Tz "z\' — 450 Y o,
o, =Y
A
-y = . - - - —_ o o, —og, =Y
.Conditions in which yielding  [O2 ~093 = = N
can occur in a o, —0o, =+Y : R
2 > PP . 73 = ——= (Eq. 4.26)
multi-axial stress state = Va3
o,—0,==xY
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4.4.2 Distortional Energy Density (von Mises) Criterion

Originally proposed by von Mises & is the most popular for ductile materials

Total strain energy density = SED due to volumetric change +SED due to distortion

-

2

Compression

-l

+(o, —63)2 +(0y—0y)

U. = (01_02 _03)2 +(01_02)
e
18 12G

R
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[
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The yield surface Is given by

1
J|=2Y?
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A
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4.4.2 Distortional Energy Density (von Mises) Criterion contd.

Alternate form of the yield function

f=0°-Y?

where the effective stress is

J, and the octahedral shear stress are related by

Hence the von Mises yield criterion can be written as

J2

f=T t_?Y

0oc
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4.4.3 Effect of Hydrostatic stress and the 1r- plane

Hydrostatic stress has no influence on yielding

Hydrostatic axis

Definition of a «- plane
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4.5 Alternate Yield Criteria

Generally used for non ductile materials like rock, soil, concrete and
other anisotropic materials

4.5.1 Mohr-Coloumb Yield Criterion

¢ Very useful for rock and concretes

¢ Yielding depends on the hydrostatic stress

f =0,—0,+(0,+0,)sing—2ccos¢

Mohr-Coulomb /

-0 ~
/
‘f :max[ai ~0,+(0; +aj)sin¢]—2ccos¢ A
i# ] o
// ///
2¢Cos e
Y = l—¢ ,qi/,//
+SIin ¢ y 1
y _2ccosg E
© 1-sing @

Drucker—Prager

Hydrostatic axis
{()’l =0y = ()'3)
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4.5.2 Drucker-Prager Yield Criterion

This is the generalization of von Mises ey
criteria with the hydrostatic stress effect -’ 4\
InCIUded //// Hydrostatic axis
Yield function can be written as 70 “IRLALL
f :CZ|1+QNJ2‘—K ,0////,//// .
2sIn 6C Ccos
a — _¢ ] K — _¢ {a)
J3(3=sin ¢) J3(3=sin ¢)
2sIn 6C CoS
o= ¢ K= ¢

J3@B+sing)  J3(3+sing)
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4.5.3 Hill's Yield Criterion for Orthotropic Materials

This 1s the criterion iIs used for non-linear materials
The yield function is given by

f=F (022 —033)2 +G (033 _011)2 +H (611 _022)2

+ L(c7223 + 0322) +M (0123 + 0321) +N (0-122 + 0-221) -1

1 1 1

2F - ZZ+Y2 _X2

1 1 1

2G = ZZ+ N2 Y2

1 1 1

2H = X2+Y2 _ZZ
SRR NPV
823 S13 S12

For an isotropic material
oF=6G=6H=L=M =N

Namas Chandra

Advanced MeChaniCS Of Matel’ials %

Chapter 4-21




EGM 5653

General Yielding

The failure of a material I1s when the structure cannot support the

Intended function

For some special cases, the loading will continue to increase even

beyond the initial load

At this point, part of the member will still be in elastic range. When
the entire member reaches the inelastic range, then the general

yielding occurs

2
R —Ybh, M, =y 2
6
B =Ybh=R/| :
bh? )

MP :YT:]..SMY

1:5

Y
o

Member B

Member A
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4.6.1 Elastic Plastic Bending

Consider a beam made up of elastic-perfectly plastic material
subjected to bending. We want to find the maximum bending
moment the beam can sustain

Y ‘

fe—Y —>
Compression

|

e

BB B
/4\1\1\

gzz — ‘91 — ng (a) f
where, M< ;x
Y 2
&=¢ b))
h
=— C
v =25 (c)
>F, =[0,dA=0 (d)
Yy h/2
M, =M-2{0,ydA-2 [ Y,dA=0
0 Yy
or
Yy h/2
M =M, =2 o, ydA+2Y | ydA (e)
0 Yy
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4.6.1 Elastic Plastic Bending contd.

ii) =M, (§—ij (4.43)

where, M, =Ybh* /6

as k becomes large

MEP _)ng :MP
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4.6.2 Fully Plastic Bending

Definition: Bending required to ——b—> ¥z
cause yielding either in tension il y >
or compression over the entire T N —t—
Cross section , =
Equilibrium condition l <> i
_ _ <y
Z FZ - IGZZdA =0 (a) (b)
P
Fully plastic moment is , < L
=
t+b T/
M P — th - (a) 10fF——+
2 ,
1 FH i
e gl I,, I R N N
il 0 10 20 30 40 50
LA = O

Ratio of deflection to
maximum elastic deflection
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Comparison of failure yield criteria

For a tensile specimen

of ductile steel the

following six quantities

attain their critical

values at the same load P,

EGM 5653

P

A
i

Tensile stress, o

. = Gage length

A7y

A = Area

e = Total stretch
in gage length

/-_- Jov

1O
>
\_U:/_1

Test specimen

Y

L*‘*)’*‘

Strain, € = 5
!

1. Maximum principal stress (@ =R /A reaches the yield strength Y
2. Maximum principal strain (6. =om/E)reaches the value s =Y/E
3. Strain energy Uo absorbed by the material per unit volume reaches

the valueu,, =Y?/2E
4. The maximum shear stress (r... =R /2A)reaches the

tresca shear strength (z, =Y /2)
5. The distortional energy density U reaches U,, =Y*/6G
6. The octahedral shear stress - =2y /3=0.471y

Namas Chandra
Advanced Mechanics of Materials

%

Chapter 4-26




EGM 5653

Failure criteria for general yielding

TABLE 4.1 Failure Criteria for General Yielding

a 4 Critical value in
ney terms of tension test

1. Maximum principal siress

P, 4 P ¥ = Py,/A
4—4 L . >
-
2. Maximum principal strain
o |=-Unit lengih = Y/F
P‘ — d l !i, !' = }/l.
-t L & é—»
3. Strain-energy density
o
| -7 = l’: ,.'“’ )’-2’1‘
| w,_ 2%
L 3
4. Maximum shear strass
PY 5 \m‘—ﬁ P’ T’ = ,’, "‘21" = ’. "‘2
i T
5. Distortional energy density
Y3 P'S 2 :
g 4_‘_1_*;‘ L Upy = )_ G = ._['__
( \ )=l/ ‘ o ] vl 60r 2(1 + V)
|2 _l va | 1oy
7, Y3, CENT
J \
6. Octahedral shear stress
[ ’ &
| Tt A : =t = ‘ e
l P - $ o 7 - Poct = (J273)Y = 0471)
L -~ ¥ NG W 3
[s g Tos ® =
[ Aol | . 3 ’
Ty = VI3
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Interpretation of failure criteria for general yielding J

TABLE 4.2 Comparison of Maximum Utilizable Values of a Material Quantity According to Various Yield
Criteria for States of Stress in the Tension (a) and Torsion (b) Teats

o o l',
l N~
Ve
o T
o) ! Y.' ]
) 2) (3) (4)
Relation between values of
Predicted maximum Predicted maximum Y and 1y if the criterion is
utilizable value as obtained utilizable value as obtained correct for both stress
Yield criterion from a tension test (a) from a torsion test (b) states (col. 2=col. 3)

Maximum principal
si"ess

Maximum principal
strain, v= '/,

Maximum shear stress

Maximum octahedral
shear stress

Maximum distortional
enargy density

. )
Foiay = %)
Coced ‘: Y

anul .)
5%
€ = iE
rvm.\ o~ x)
5
‘nltl? A"'it)
. )
Upy = 3

. - Y
r, = "
Ty = %)'
Iy = —l- 4
¥ 7
Ty -l—_)'
WK
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Combined Bending and Loading

According to Maximum shear stress criteria, yielding starts when

)
e ey P A o 8
V2 2

5] (5]

According to the octahedral shear-stress criterion, yielding starts when

\/202 +67° 7 ﬁY :
3

3

(8 7]
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Interpretation of failure criteria for general yielding

Maximum shear stress

M alone re
1.00
- N
=
] CE" N Octahedral shear stress /\/
o 1 : f -~
o 0-95 T~y I 1 | 1 i¢ |
T < g \ \\ Strain energy density 71 @ onle
1 o 2 4 o\ 1
p M E ﬁ \ ‘ ) T alone
] g é 0.90 \\ Maximum principal strain —J\/
s @ I
= 3 I T T N\
T S e Maximum principal stress h|
— % £ 0.85 ] A, T alone
- E = S —
a 7 s E ~—1
4‘*‘ *—’ T = /\,
T a -6 g
2 0.80 \,-
- = E
: c £ T alone
; A,
=|"
0.75
0 1 2 3 4 5 [S) 7 8 =] 16\/ oo

5 = Ratio of torsional moment to bending moment
d

Comparison of von Mises and Tresca criteria

0.6
0.577

Octahedral shear stress
0.5

0.4
Maximum shear stress

Ratio: 7/Y
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Problem 4.24

4.24 A rectangular beam of width b and depth h is subjected to pure

bending with a moment M=1.25M,. Subsequently, the moment is released.

Assume the plane sections normal to the neutral axis of the beam remain

plane during deformation.

a. Determine the radius of curvature of the beam under the applied bending
moment M=1.25My

b. Determine the distribution of residual bending stress after the applied

bending moment is released
Solution:

ukamw AL (aee Preb.4-23 wh p=1.25)
M= 125 My (2
mWM’WM Al
= YIx -
My Y = L bl Y (b)

h/x
By Egs. @) ard(b),
| M =S5 bRY =

By Fig- &, M= Mp=a(§-e)bylhiate ‘(%j‘%ey"y ()
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Problem 4.24 contd.

. Y
E w Egs . () avd(d) l— b — H"l,
< . : 1‘ Compre ssion T
- L h h h
C25i ® 2' I:
iz | h last, Elast
a 25 Elastic. asT|
/; & S'l'.rcssﬂuh ‘f":ig
p - TS O A4 L x':tsty. Mw;My
. Tension
4—&4«%% tfy[ﬁ;.b). Figqure a ?
AL yze, €= Y/E, whu Eiy g 4

s coonvaliine of Htie beam <

T v e=0.353bh
7-?::‘32) W'ﬂ\(w O—L-
_ Ee

Y
Figuvre b (Coﬂt-)
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Problem 4.24 contd.

4:1.1.; Cout. (b) With M= !.ZS’M),I %MWWW

A
\/LH\JE
o

]

/
f-o.25y —'l ,‘—o.uby
Figvre ¢
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Problem 4.40

4.40 A solid aluminum alloy (Y= 320 Mpa)
shaft extends 200mm from a bearing support
to the center of a 400 mm diameter pulley.
The belt tensions T,and T, vary in magnitude
with time. Their maximum values of the belt

tensions are applied only a few times during
the life of the shaft, determine the required
diameter of the shaft if the factor of safety Is

200 mm

~——

SF=2.20
Solgtion:

_4-40|M = 200(1800+180) = 394,000 N.rmm ; T = 200(1800-/80) = 324,000 N.mm

- e M0 2.20(39,000)(dX6Y) .0
el 1S 27‘,4,,,{ = & 34#‘” (#Pa)
. ¢pTC - 2.20(324, 000(D(32) _ 3,630,000 (mP
Z.— 5’:\] - 2;’.‘{(’_ - p { d)

Z
Cnar <[] % = L = 282 = L5 J2132)% (3,630,000

d: 32.97 mm
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